Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Food Funct ; 15(8): 4292-4309, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38526853

ABSTRACT

Asthma is a chronic inflammatory disorder in airways with typical pathologic features of airway inflammation and mucus hypersecretion. α-Terpineol is a monocyclic terpene found in many natural plants and foods. It has been reported to possess a wide range of pharmacological activities including anti-inflammatory and expectorant effects. However, the role of α-terpineol in asthma and its potential protective mechanism have not been well elucidated. This study is designed to investigate the pharmacological effect and mechanism of α-terpineol on asthmatic mice using the metabolomics platform. A murine model of asthma was established using ovalbumin (OVA) sensitization and then challenged for one week. The leukocyte count and inflammatory cytokines in the bronchoalveolar lavage fluid (BALF), lung histopathology, inflammatory  infiltrate and mucus secretion were evaluated. An ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS)-based metabolomics study was performed on lung tissues and serum to explore endogenous small molecule metabolites affected by α-terpineol in asthmatic mice. After α-terpineol treatment, leukocyte count, inflammatory cytokines in the BALF, and peribronchial inflammation infiltration were significantly downregulated. Goblet cell hyperplasia and mucus secretion were attenuated, with the level of Muc5ac in BALF decreased. These results proved the protective effect of α-terpineol against airway inflammation, mucus hypersecretion and Th1/Th2 immune imbalance. To further investigate the underlying mechanisms of α-terpineol in asthma treatment, UPLC-MS/MS-based metabolomics analysis was performed. 26 and 15 identified significant differential metabolites were found in the lung tissues and serum of the control, model and α-terpineol groups, respectively. Based on the above differential metabolites, enrichment analysis showed that arachidonic acid (AA) metabolism was reprogrammed in both mouse lung tissues and serum. 5-Lipoxygenase (5-LOX) and cysteinyl leukotrienes (CysLTs) are the key enzyme and the end product of AA metabolism, respectively. In-depth studies have shown that pretreatment with α-terpineol can alleviate asthma by decreasing the AA level, downregulating the expression of 5-LOX and reducing the accumulation of CysLTs in mouse lung tissues. In summary, this study demonstrates that α-terpineol is a potential agent that can prevent asthma via regulating disordered AA metabolism.


Subject(s)
Arachidonic Acid , Asthma , Bronchoalveolar Lavage Fluid , Cyclohexane Monoterpenes , Lung , Metabolomics , Mice, Inbred BALB C , Animals , Asthma/drug therapy , Asthma/metabolism , Mice , Cyclohexane Monoterpenes/pharmacology , Arachidonic Acid/metabolism , Lung/drug effects , Lung/metabolism , Female , Disease Models, Animal , Cytokines/metabolism , Ovalbumin , Tandem Mass Spectrometry , Mucin 5AC/metabolism , Chromatography, High Pressure Liquid
2.
Biomed Chromatogr ; 38(4): e5826, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38205667

ABSTRACT

Artemisia argyi H.Lév. & Vaniot essential oil (AAEO) has shown pharmacological effects such as anti-inflammation, antioxidant, and anti-tumor properties. However, the protective effect of AAEO on lipopolysaccharide (LPS)-induced liver injury and its potential protective mechanism are still unclear. In this study, we used ultra-performance liquid chromatography tandem mass spectrometry metabolomics techniques to investigate the changes in liver tissue metabolites in mice exposed to LPS with or without AAEO treatment for 14 days. The biochemical results showed that compared with the control group, AAEO significantly reduced the levels of liver functional enzymes, suggesting a significant improvement in liver injury. In addition, the 18 differential metabolites identified by metabolomics were mainly involved in the reprogramming of arachidonic acid metabolism, tryptophan metabolism, and purine metabolism. AAEO could significantly inhibit the expression of COX-2, IDO1, and NF-κB; enhance the body's anti-inflammatory ability; and alleviate liver injury. In summary, our study identified the protective mechanism of AAEO on LPS-induced liver injury at the level of small molecular metabolites, providing a potential liver protective agent for the treatment of LPS-induced liver injury.


Subject(s)
Artemisia , Chemical and Drug Induced Liver Injury, Chronic , Oils, Volatile , Mice , Animals , Artemisia/chemistry , Oils, Volatile/pharmacology , Lipopolysaccharides/adverse effects , Tandem Mass Spectrometry , Liquid Chromatography-Mass Spectrometry , Metabolomics
3.
J Pharm Biomed Anal ; 234: 115574, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37481900

ABSTRACT

Allergic rhinitis (AR) is a common allergic disease characterized by nasal congestion, rhinorrhoea, and sneezing. Cineole, a monoterpenoid compound widely present in various volatile oils, has a wide range of pharmacological activities and is of interest in allergic airway diseases for its anti-inflammatory and anti-mucus production abilities. However, the protective effects of cineole in mice with allergic rhinitis and its mechanisms have not been well investigated. In this study, the protective effect of cineole against ovalbumin-induced (OVA-induced) allergic rhinitis and its molecular mechanism is investigated by metabolomic analysis based on ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). OVA combined with aluminum hydroxide adjuvant is used to sensitize and establish the allergic rhinitis (AR) mouse model. The mice are randomly divided into groups of control, AR, cineole (30 mg/kg), and budesonide (38.83 µg/kg). The pharmacodynamic results show that cineole significantly reduces the levels of Th2-type cytokines and OVA-specific IgE (OVA-sIgE) in AR mice, improves nasal mucosal tissue damage and alleviates nasal symptoms compared to the untreated AR group. Metabolomic results show that arachidonic acid (AA) metabolism and tryptophan (Trp) metabolism are reprogrammed on the basis of 27 significantly altered metabolites. Further studies show that cineole inhibits the biosynthesis of pro-inflammatory lipid mediators leukotrienes (LTs) and prostaglandins (PGs) in mice by inhibiting the activity of 5-lipoxygenase (5-LOX) and cyclooxygenase-2 (COX-2) in the arachidonic acid metabolic (AA metabolic) pathway. It also inhibits the production of Th2 cytokines and inflammatory cell infiltration, thereby alleviating symptoms such as nasal congestion and nasal leakage. These results reveal the action and molecular mechanism of cineole in alleviating AR and provide a theoretical basis for the clinical application of cineole in treating AR.


Subject(s)
Prostaglandins , Rhinitis, Allergic , Mice , Animals , Eucalyptol/therapeutic use , Prostaglandins/adverse effects , Arachidonic Acid , Chromatography, Liquid , Immunoglobulin E , Tandem Mass Spectrometry , Rhinitis, Allergic/chemically induced , Rhinitis, Allergic/drug therapy , Cytokines , Leukotrienes/adverse effects , Metabolomics , Ovalbumin , Disease Models, Animal , Mice, Inbred BALB C
4.
Dalton Trans ; 51(45): 17180-17191, 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36314532

ABSTRACT

Altering the local symmetry of an activator by lattice tuning is considered an effective strategy to optimize the luminescence performance of phosphors. Herein, the novel Mn4+-activated double perovskite phosphor La1.67MgTaO6 (LMTO) with A-site defects was successfully prepared. Benefiting from the random occupation of the nearest A-site by cations and vacancies, the distorted [MnO6] octahedra lack the inversion center. The LMTO:0.4 mol%Mn4+ phosphor has a significant zero-phonon line intensity with a high internal quantum efficiency (IQE) value of 62.97% after the Laporte selection rule is broken. Furthermore, local lattice tuning was performed by increasing the randomness of the A-site and the distortion index of the [MnO6] octahedron by co-doping with Ca2+ or Sr2+ ions. Importantly, the IQE value of the samples was enhanced from 62.97% to 72.65% and the activation energy increased from 0.497 eV to 0.548 eV, which can be well applied in the fields of plant cultivation and warm white light-emitting diodes. These studies provide valid fundamental insights for the selection of excellent luminescent matrices to obtain efficient Mn4+-activated phosphors via local lattice tuning.

5.
Dalton Trans ; 51(7): 2660-2663, 2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35112694

ABSTRACT

Four isomorphic P2 chalcogenide clusters named [Sn11In9Cu6S44]·11(H+DBU) (1) (DBU = 1,8-diazabicyclo[5.4.0] undec-7-ene), [Sn10In10Cu6Se44]·6(H22+DMAPA)·2(DMAPA)·9EG (2) (DMAPA = 3-dimethylaminopropylamine, EG = ethylene glycol), [Sn10In10Cu6S40O4]·6[H22+PMDETA]·10EG (3) (PMDETA = pentamethyldiethylenetriamine), [Sn10Ga10Cu6S40O4]·6(H22+DMAPA)·7EG (4) have been isolated via organotin precursor and mixed-metal strategy. These clusters exhibit excellent solubility in organic solvents. The continuous-regulation of optical band and optical limiting performance have been realized through precise controlled substituting engineering of cationic and anionic elements.

6.
Food Chem ; 352: 129450, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-33714803

ABSTRACT

The unique flavor of and rich physiological activities exhibited by the Chinese JingJiu has made it become an essential part of the blended alcoholic beverage. In this study, the aromatic characteristics of Chinese JingJiu have been identified using sensory analysis, aroma extraction dilution analysis (AEDA), and quantitative analysis techniques. The odor activity values (OAVs) were also used to characterize the compound. A total of 136 aroma compounds were identified through the AEDA and gas chromatography-mass spectrometry (GC-MS) techniques. The flavor dilution (FD) factors were found to be in the range of 2-1024. Seventy aroma-active compounds with FD ≥ 8 were identified. Forty-three aroma-active compounds were identified using the molecular sensory science approach. Furthermore, 13 compounds were confirmed to be the key aroma-active compounds present in the Chinese JingJiu. The work provides a certain guiding effect on the regulation and optimization of the Chinese JingJiu production process.


Subject(s)
Alcoholic Beverages/analysis , Food Analysis/methods , Odorants/analysis , Gas Chromatography-Mass Spectrometry , Indicator Dilution Techniques , Taste , Volatile Organic Compounds/analysis
7.
Microb Drug Resist ; 27(6): 776-785, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33180649

ABSTRACT

Penicillium digitatum is the most destructive postharvest pathogen of citrus fruits, causing substantial economic losses. Prochloraz-resistant strains have emerged due to overuse of imidazole fungicides in agriculture. To study the prochloraz resistance mechanisms at the system level, a genome-scale metabolic model (GEM, iPD1512) of P. digitatum was reconstructed and constrained based on context-specific transcriptome data of the prochloraz-resistant strain, PdF6, from our previous work, a newly sequenced, context-specific transcriptome result of the major facilitator superfamily transporter-encoding gene mfs2 knockout mutant PdF6Δmfs2, and experimentally derived growth rate data. Through the model, iPD1512, the processes of prochloraz resistance in P. digitatum were well simulated. In detail, the growth rates of both wild-type and mutant P. digitatum under different prochloraz concentrations were simulated using constraint-based reconstruction and analysis. The growth rates of the mutant strains (sterol regulatory element-binding protein-encoding gene sreA knockout mutant PdF6ΔsreA and PdF6Δmfs2) were calculated and confirmed to be consistent with the simulation results. Furthermore, correlations between genes and prochloraz resistance were predicted and showed a great difference when compared with correlation results based on p-values from the hypothesis testing used by comparative transcriptomics. To sum up, in contrast to traditional transcriptome analysis, the GEM provides a systemic and dynamic drug resistance mechanism, which might help to detect some key upstream regulatory genes, but with small expression changes, and might provide more efficient targets to control prochloraz-resistant P. digitatum.


Subject(s)
Drug Resistance, Fungal/drug effects , Drug Resistance, Fungal/genetics , Fungicides, Industrial/pharmacology , Imidazoles/pharmacology , Penicillium/drug effects , Penicillium/genetics , Computational Biology , Fungal Proteins , Gene Expression Profiling , Genes, Fungal/genetics
8.
BMC Genomics ; 21(1): 156, 2020 Feb 12.
Article in English | MEDLINE | ID: mdl-32050894

ABSTRACT

BACKGROUND: Penicillium italicum (blue mold) is one of citrus pathogens causing undesirable citrus fruit decay even at strictly-controlled low temperatures (< 10 °C) during shipping and storage. P. italicum isolates with considerably high resistance to sterol demethylation inhibitor (DMI) fungicides have emerged; however, mechanism(s) underlying such DMI-resistance remains unclear. In contrast to available elucidation on anti-DMI mechanism for P. digitatum (green mold), how P. italicum DMI-resistance develops has not yet been clarified. RESULTS: The present study prepared RNA-sequencing (RNA-seq) libraries for two P. italicum strains (highly resistant (Pi-R) versus highly sensitive (Pi-S) to DMI fungicides), with and without prochloraz treatment, to identify prochloraz-responsive genes facilitating DMI-resistance. After 6 h prochloraz-treatment, comparative transcriptome profiling showed more differentially expressed genes (DEGs) in Pi-R than Pi-S. Functional enrichments identified 15 DEGs in the prochloraz-induced Pi-R transcriptome, simultaneously up-regulated in P. italicum resistance. These included ATP-binding cassette (ABC) transporter-encoding genes, major facilitator superfamily (MFS) transporter-encoding genes, ergosterol (ERG) anabolism component genes ERG2, ERG6 and EGR11 (CYP51A), mitogen-activated protein kinase (MAPK) signaling-inducer genes Mkk1 and Hog1, and Ca2+/calmodulin-dependent kinase (CaMK) signaling-inducer genes CaMK1 and CaMK2. Fragments Per Kilobase per Million mapped reads (FPKM) analysis of Pi-R transcrtiptome showed that prochloraz induced mRNA increase of additional 4 unigenes, including the other two ERG11 isoforms CYP51B and CYP51C and the remaining kinase-encoding genes (i.e., Bck1 and Slt2) required for Slt2-MAPK signaling. The expression patterns of all the 19 prochloraz-responsive genes, obtained in our RNA-seq data sets, have been validated by quantitative real-time PCR (qRT-PCR). These lines of evidence in together draw a general portrait of anti-DMI mechanisms for P. italicum species. Intriguingly, some strategies adopted by the present Pi-R were not observed in the previously documented prochloraz-resistant P. digitatum transcrtiptomes. These included simultaneous induction of all major EGR11 isoforms (CYP51A/B/C), over-expression of ERG2 and ERG6 to modulate ergosterol anabolism, and concurrent mobilization of Slt2-MAPK and CaMK signaling processes to overcome fungicide-induced stresses. CONCLUSIONS: The present findings provided transcriptomic evidence on P. italicum DMI-resistance mechanisms and revealed some diversity in anti-DMI strategies between P. italicum and P. digitatum species, contributing to our knowledge on P. italicum DMI-resistance mechanisms.


Subject(s)
Gene Expression Profiling , RNA, Long Noncoding , Rodentia/genetics , Transcriptome , Animals , Computational Biology/methods , Gene Expression Regulation , Genome , Genomics/methods , Nucleic Acid Conformation , Organ Specificity/genetics , RNA, Long Noncoding/chemistry , RNA, Long Noncoding/genetics
9.
Virol Sin ; 34(6): 688-700, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31376081

ABSTRACT

Mycoviruses have been found to infect more than 12 species of Penicillium, but have not been isolated from Penicillium italicum (P. italicum). In this study, we isolated and characterized a new double-stranded RNA (dsRNA) virus, designated Penicillium italicum chrysovirus 1 (PiCV1), from the citrus pathogen P. italicum HSPi-YN1. Viral genome sequencing and molecular characterization indicated that PiCV1 was highly homologous to the previously described Penicillium chrysogenum virus. We further constructed the mutant HSPi-YN1ΔpksP defective in the polyketide synthase gene (pksP), which is involved in pigment biosynthesis, and these mutants formed albino (white) colonies. Then we applied hyphal anastomosis method to horizontally transmit PiCV1 from the white virus-donors (i.e., HSPi-YN1 mutants) to wild-type recipients (i.e., P. italicum strains HSPi-CQ54, HSPi-HB4, and HSPi-HN1), and the desirable PiCV1-infected isogenic recipients, a certain part of blue wild-type strains, can be eventually selected and confirmed by viral genomic dsRNA profile analysis. This blue-white colony screening would be an easier method to select virus-infected P. italicum recipients, according to distinguishable color phenotypes between blue virus-recipients and white virus-donors. In summary, the current work newly isolated and characterized PiCV1, verified its horizontal transmission among dually cultured P. italicum isolates, and based on these, established an effective and simplified approach to screen PiCV1-infected isogenic recipients.


Subject(s)
Fungal Viruses/physiology , Penicillium/isolation & purification , Penicillium/virology , Citrus/microbiology , Fungal Proteins/genetics , Fungal Viruses/classification , Fungal Viruses/genetics , Fungal Viruses/ultrastructure , Genome, Viral/genetics , Genotype , Hyphae/classification , Hyphae/genetics , Hyphae/isolation & purification , Hyphae/virology , Mutation , Penicillium/classification , Penicillium/genetics , Phenotype , Phylogeny , Pigmentation , Plant Diseases/microbiology , Polyketide Synthases/genetics , RNA, Double-Stranded , Viral Proteins/genetics
10.
Article in English | MEDLINE | ID: mdl-31157173

ABSTRACT

Penicillium sp. are damaging to a range of foods and fruits including citrus. To date, double-stranded (ds)RNA viruses have been reported in most Penicillium species but not in citrus pathogen P. crustosum. Here we report a novel dsRNA virus, designated as Penicillium crustosum chrysovirus 1 (PcCV1) and isolated from P. crustosum strain HS-CQ15. PcCV1 genome comprises four dsRNA segments, referred to as dsRNA1, dsRNA2, dsRNA3, and dsRNA4, which are 3600, 3177, 3078, and 2808 bp in length, respectively. Sequence analysis revealed the presence of four open reading frames (ORFs) in the PcCV1 genome. ORF1 in dsRNA1 encodes a putative RNA-dependent RNA polymerase (RdRp) and ORF2 in dsRNA2 encodes a putative coat protein (CP). The two remaining ORFs, ORF3 in dsRNA3 and ORF4 in dsRNA4, encode proteins of unknown function. Phylogenetic analysis based on RdRp sequences showed that PcCV1 clusters with other members of the genus Chrysovirus, family Chrysoviridae. Transmission electron microscope (TEM) analysis revealed that the PcCV1 visions are approximately 40 nm in diameter. Regarding biological effects of PcCV1, HS-CQ15 harboring the chrysovirus exhibited no obvious difference in colony morphology under fungicide-free conditions but decreased resistance to demethylation inhibitor (DMI)-fungicide prochloraz, as compared to PcCV1-cured strain. Here we provide the first evidence of a virus present in citrus pathogenic fungus P. crustosum and the chrysovirus-induced change in fungicide-resistance of its host fungus.


Subject(s)
Citrus/microbiology , Citrus/virology , Fungicides, Industrial/pharmacology , Penicillium/drug effects , Penicillium/virology , RNA Viruses/genetics , RNA Viruses/physiology , Drug Resistance, Fungal , Genome, Viral , Open Reading Frames , Phylogeny , Plant Diseases/microbiology , Plant Diseases/virology , RNA Viruses/classification , RNA Viruses/isolation & purification , RNA, Double-Stranded , RNA-Dependent RNA Polymerase/genetics
11.
J Neuroinflammation ; 16(1): 71, 2019 Apr 04.
Article in English | MEDLINE | ID: mdl-30947729

ABSTRACT

BACKGROUND: HIV-associated neurocognitive disorders (HANDs) afflict more than half of HIV-1-positive individuals. The transactivator of transcription (Tat) produced by HIV virus elicits inflammatory process and is a major neurotoxic mediator that induce neuron damage during HAND pathogenesis. Activated astrocytes are important cells involved in neuroinflammation and neuronal damage. Purinergic receptors expressed in astrocytes participate in a positive feedback loop in virus-induced neurotoxicity. Here, we investigated that whether P2Y4R, a P2Y receptor subtype, that expressed in astrocyte participates in Tat-induced neuronal death in vitro and in vivo. METHODS: Soluble Tat protein was performed to determine the expression of P2Y4R and proinflammatory cytokines in astrocytes using siRNA technique via real-time PCR, Western blot, and immunofluorescence assays. Cytometric bead array was used to measure proinflammatory cytokine release. The TUNEL staining and MTT cell viability assay were analyzed for HT22 cell apoptosis and viability, and the ApopTag® peroxidase in situ apoptosis detection kit and cresyl violet staining for apoptosis and death of hippocampal neuron in vivo. RESULTS: We found that Tat challenge increased the expression of P2Y4R in astrocytes. P2Y4R signaling in astrocytes was involved in Tat-induced inflammatory cytokine production via PI3K/Akt- and ERK1/2-dependent pathways. Knockdown of P2Y4R expression significantly reduced inflammatory cytokine production and relieved Tat-mediated neuronal apoptosis in vitro. Furthermore, in vivo challenged with Tat, P2Y4R knockdown mice showed decreased inflammation and neuronal damage, especially in hippocampal CA1 region. CONCLUSIONS: Our data provide novel insights into astrocyte-mediated neuron damage during HIV-1 infection and suggest a potential therapeutic target for HANDs.


Subject(s)
Astrocytes/drug effects , Cytokines/metabolism , Neurons/drug effects , Receptors, Purinergic P2/metabolism , Signal Transduction/physiology , tat Gene Products, Human Immunodeficiency Virus/pharmacology , Adenosine Triphosphate/metabolism , Animals , Animals, Newborn , Cells, Cultured , Cerebral Cortex/cytology , Enzyme Inhibitors/pharmacology , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Glial Fibrillary Acidic Protein/genetics , Glial Fibrillary Acidic Protein/metabolism , Glioma/pathology , Humans , MAP Kinase Signaling System , Mice , Mice, Inbred C57BL , Neurons/pathology , Oncogene Protein v-akt , Phosphatidylinositol 3-Kinases , RNA, Messenger/metabolism , Receptors, Purinergic P2/genetics , Signal Transduction/genetics , Transduction, Genetic , tat Gene Products, Human Immunodeficiency Virus/genetics , tat Gene Products, Human Immunodeficiency Virus/metabolism
12.
J Neuroinflammation ; 15(1): 303, 2018 Oct 31.
Article in English | MEDLINE | ID: mdl-30382871

ABSTRACT

BACKGROUND: HIV-associated neurocognitive disorder (HAND) is a neurodegenerative disease associated with persistent neuroinflammation and subsequent neuron damage. Pro-inflammatory factors and neurotoxins from activated astrocytes by HIV-1 itself and its encoded proteins, including the negative factor (Nef), are involved in the pathogenesis of HAND. This study was designed to find potential lncRNAs that regulate astrocyte functions and inflammation process. METHODS: We performed microarray analysis of lncRNAs from primary mouse astrocytes treated with Nef protein. Top ten lncRNAs were validated through real-time PCR analysis. Gene ontology (GO) and KEGG pathway analysis were applied to explore the potential functions of lncRNAs. RIP and ChIP assays were performed to demonstrate the mechanism of lncRNA regulating gene expression. RESULTS: There were 638 co-upregulated lncRNAs and 372 co-downregulated lncRNAs in primary astrocytes treated with Nef protein for both 6 h and 12 h. GO and KEGG pathway analysis showed that the biological functions of top differential-expressed mRNAs were associated with inflammatory cytokines and chemokine. Knockdown of lncRNA AK006025, not AK138360, inhibited significantly CXCL9, CXCL10 (IP-10), and CXCL11 expression in astrocytes treated with Nef protein. Mechanism study showed that AK006025 associated with CBP/P300 was enriched in the promoter of CXCL9, CXCL10, and CXCL11 genes. CONCLUSIONS: Our findings uncovered the expression profiles of lncRNAs and mRNAs in vitro, which might help to understand the pathways that regulate astrocyte activation during the process of HAND.


Subject(s)
Astrocytes/drug effects , Chemokine CXCL1/metabolism , Gene Expression Regulation/drug effects , Membrane Proteins/metabolism , Phosphoproteins/metabolism , RNA, Long Noncoding/metabolism , nef Gene Products, Human Immunodeficiency Virus/pharmacology , Animals , Animals, Newborn , Astrocytes/metabolism , Calcium-Binding Proteins/metabolism , Cells, Cultured , Cerebral Cortex/cytology , Gene Expression Regulation/genetics , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Mice , Mice, Inbred C57BL , Microfilament Proteins/metabolism , RNA, Messenger/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Time Factors , Transfection , nef Gene Products, Human Immunodeficiency Virus/metabolism
13.
Sci Rep ; 8(1): 5513, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29615698

ABSTRACT

Pathogenic fungi including Penicillium digitatum and Penicillium italicum are the main destructive pathogens in the citrus industry, causing great losses during postharvest process. To our knowledge, only one mycovirus from P. digitatum has been reported, and the prevalence of such mycoviruses against citrus postharvest pathogenic fungi and their genotyping were still under investigation. In the present study, we showed that 39 of 152 Penicillium isolates from main citrus-growing areas in China were infected with various mycoviruses belonging to polymycoviruses, Narna-like viruses, and families Totiviridae, Partitivirdae and Chrysoviridae. The next generation sequencing (NGS) towards virus genome library and the following molecular analysis revealed two novel mycoviruses Penicillium digitatum polymycovirus 1 (PdPmV1) and Penicillium digitatum Narna-like virus 1 (PdNLV1), coexisting in P. digitatum strain HS-RH2. The fungicide-resistant P. digitatum strains HS-F6 and HS-E9 coinfected by PdPmV1 and PdNLV1 exhibited obvious reduction in triazole drug prochloraz resistance by mycelial growth analysis on both PDA plates and citrus fruit epidermis with given prochloraz concentration. This report at the first time characterized two novel mycoviruses from P. digitatum and revealed the mycovirus-induced reduction of fungicide resistance.


Subject(s)
Fungicides, Industrial , Penicillium/virology , Plant Viruses/physiology , Amino Acid Sequence , Citrus/microbiology , Evolution, Molecular , Penicillium/physiology , Phylogeny , Viral Proteins/chemistry , Viral Proteins/metabolism
14.
Curr Microbiol ; 75(5): 541-549, 2018 May.
Article in English | MEDLINE | ID: mdl-29234881

ABSTRACT

To investigate contribution of environmental factor(s) to microbial community structure(s) involved in rural household biogas fermentation at Qinghai Plateau, we collected slurry samples from 15 digesters, with low-temperature working conditions (11.1-15.7 °C) and evenly distributed at three counties (Datong, Huangyuan, and Ledu) with cold plateau climate, to perform polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and further sequencing. The bacterial communities in the total 15 digesters were classified into 38 genera with Mangroviflexus (12.1%) as the first dominant, and the archaeal communities into ten genera with Methanogenium (38.5%) as the most dominant. For each county, the digesters with higher biogas production, designated as HP digesters, exclusively had 1.6-3.1 °C higher fermentation temperature and the unique bacterial structure composition related, i.e., unclassified Clostridiales for all the HP digesters and unclassified Marinilabiliaceae and Proteiniclasticum for Ledu HP digesters. Regarding archaeal structure composition, Methanogenium exhibited significantly higher abundances at all the HP digesters and Thermogymnomonas was the unique species only identified at Ledu HP digesters with higher-temperature conditions. Redundancy analysis also confirmed the most important contribution of temperature to the microbial community structures investigated. This report emphasized the correlation between temperature and specific microbial community structure(s) that would benefit biogas production of rural household digesters at Qinghai Plateau.


Subject(s)
Archaea/isolation & purification , Bacteria/isolation & purification , Biofuels/analysis , Gases/metabolism , Sewage/microbiology , Archaea/classification , Archaea/genetics , Archaea/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Biodiversity , China , Denaturing Gradient Gel Electrophoresis , Fermentation , Polymerase Chain Reaction
15.
Mar Drugs ; 15(4)2017 Apr 05.
Article in English | MEDLINE | ID: mdl-28379163

ABSTRACT

Sterol 14α-demethylases from Cytochrome P450 family (CYP51s) are essential enzymes in sterol biosynthesis and well-known as the target of antifungal drugs. The 3D structure of CYP51A from Penicillium italicum (PiCYP51A) was constructed through homology modeling based on the crystal structure of human CYP51A (PDB: 3LD6). Molecular dynamics (MD) simulation was operated to relax the initial model and followed by quality assessment using PROCHECK program. On the basis of the docking information on the currently available CYP51s with the patent demethylase inhibitors (DMIs), pharmacophore-based virtual screening combined with docking analysis was performed to pick out twelve new compounds from ZINC database. Six hits revealed in the ligand database suggested potential ability to inhibit PiCYP51A. Compared to patent fungicide triazolone, the top three lead compounds had similar or higher affinity with the target enzyme, and accordingly, exhibited comparable or lower EC50 values to P. italicum isolates. The results could provide references for de novo antifungal drug design.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Penicillium/metabolism , Antifungal Agents/metabolism , Drug Design , Fungal Proteins/metabolism , Humans , Ligands , Molecular Docking Simulation/methods , Molecular Dynamics Simulation
16.
Radiother Oncol ; 71(2): 213-21, 2004 May.
Article in English | MEDLINE | ID: mdl-15110456

ABSTRACT

BACKGROUND AND PURPOSE: To evaluate the potential role and mechanism of docetaxel plus flavopiridol in modulating radiosensitivity in vitro and in vivo. PATIENTS AND METHODS: In vitro. H460 human lung carcinoma cells were treated with docetaxel (10 nM for 1 h, at t = 0 h) --> radiation (0-5 Gy, at t = 6 h) --> flavopiridol (120 nM for 24 h, at t = 8 h). Colony forming ability was measured to assess the modulation of sensitivity. Cell cycle redistribution was measured by flow cytometric analysis using propidium iodide. Percent apoptosis was also measured by flow cytometric analysis using 7-amino-actinomycin D staining. In vivo. H460 cell xenografts were used in nude mice. Tumors were grown subcutaneously on the flank, then treated with docetaxel (2.5 mg/kg, at t = 0 h) --> radiation (2 Gy, at t = 6 h) --> flavopiridol (1.25 mg/kg, at t = 8 h) for 5 consecutive days. Tumor growth delay was then measured and compared with the control group. RESULTS: Docetaxel plus flavopiridol enhanced the effect of radiation. The maximum radiopotentiation and apoptosis were observed when the cells were treated with the sequence of docetaxel-->radiation-->flavopiridol both in vitro and in vivo. Flavopiridol and docetaxel induced G1 and G2/M arrest, respectively. CONCLUSIONS: This study shows that docetaxel plus flavopiridol enhances the effects of radiation in vitro and in vivo. Our data suggest that the mechanism of radiopotentiation by combining flavopiridol and docetaxel involves an enhancement of apoptosis and changes of cell cycle by docetaxel and flavopiridol.


Subject(s)
Flavonoids/pharmacology , Piperidines/pharmacology , Radiation-Sensitizing Agents/pharmacology , Taxoids/pharmacology , Tumor Cells, Cultured/drug effects , Tumor Cells, Cultured/radiation effects , Animals , Cell Survival , Combined Modality Therapy , Disease Models, Animal , Docetaxel , Drug Therapy, Combination , Female , Humans , In Vitro Techniques , Lung Neoplasms/drug therapy , Lung Neoplasms/radiotherapy , Mice , Mice, Nude , Neoplasm Transplantation , Probability , Radiation Dosage , Sensitivity and Specificity , Survival Rate , Xenograft Model Antitumor Assays
17.
Radiother Oncol ; 68(3): 305-13, 2003 Sep.
Article in English | MEDLINE | ID: mdl-13129641

ABSTRACT

BACKGROUND AND PURPOSE: To evaluate a semisynthetic epothilone B, BMS-247550, as a potential radiosensitizer in vitro and in vivo. MATERIALS AND METHODS: Human NCI-H460 lung cancer cells were treated with either BMS-247550 or paclitaxel and in combination with radiation at multiple doses for different time periods. Surviving fractions were then analyzed using a clonogenic assay. Cell cycle redistribution by BMS-247550 was measured with propidium iodide and flow cytometry. Percent apoptosis was also measured using 7-amino-actinomycin D staining with flow cytometry. For in vivo studies, the H460 xenograft model was used in athymic nude mice. Tumors were treated with BMS-247550 (5 mg/kg) i.p. injection on days 0, 2, and 4 and/or radiation (2 Gy/day, days 0-4). RESULTS: The in vitro radiation dose enhancement ratios (DER) of 1-h BMS-247550 and paclitaxel were 2.03 and 1.34, respectively. Treatment with BMS-247550 enhanced the G2/M block and induced apoptosis; whereas in combination with radiation, the induction of apoptosis was additive. BMS-247550 in combination with radiation in vivo enhanced the tumor growth delay when compared with either drug or radiation alone. CONCLUSIONS: These results demonstrated that BMS-247550 could enhance the effects of radiation in human lung cancer cells both in vitro and in vivo and that a G2/M block and increased apoptosis might be possible explanations for the enhancement.


Subject(s)
Carcinoma, Large Cell/drug therapy , Carcinoma, Large Cell/radiotherapy , Epothilones/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/radiotherapy , Radiation-Sensitizing Agents/pharmacology , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Apoptosis/radiation effects , Cell Cycle/drug effects , Cell Cycle/radiation effects , Cell Line, Tumor , Dose-Response Relationship, Drug , Dose-Response Relationship, Radiation , Female , Flow Cytometry , Humans , Indicators and Reagents , Mice , Mice, Nude , Paclitaxel/therapeutic use , Propidium , Transplantation, Heterologous
18.
Steroids ; 68(2): 205-9, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12606012

ABSTRACT

CYP19 (P450arom) catalyzes the aromatization reaction of C19 steroids leading to estrogens. While readily expressed in insect cells, the human P450arom has been a difficult P450 to express in Escherichia coli at useful levels. In the present study, we replaced the N-terminal sequence in human CYP19 with the corresponding sequences of other microsomal P450s (CYP2C11 and CYP17) that are efficiently expressed in E. coli. Although the N-terminal replacement alone was not sufficient for the expression, human P450arom was successfully expressed up to the level of 240nmol/l culture by the combination of the N-terminal replacement and the induction of cold stress response by 1 microg/ml chloramphenicol. Membrane fractions containing the expressed P450arom catalyzed aromatization of androstenedione with a specific activity of 4.9 nmol/min/nmol P450. Our results are important to provide large quantities of human P450arom as an active form for structure-function studies.


Subject(s)
Aromatase/genetics , Aromatase/metabolism , Cold Temperature , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Amino Acid Sequence , Androstenedione/metabolism , Animals , Aromatase/biosynthesis , Aromatase/chemistry , Cattle , Chloramphenicol/pharmacology , Escherichia coli/drug effects , Gene Expression/drug effects , Humans , Molecular Sequence Data , Rats , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
19.
Radiother Oncol ; 62(1): 61-7, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11830313

ABSTRACT

BACKGROUND AND PURPOSE: We have tested the camptothecin analogs, RFS-2000 or CPT-11, in combination with both etoposide and ionizing radiation in vitro to examine the radiation enhancing potential of topoisomerase I plus topoisomerase II (Topo I+Topo II) inhibition in human cancer cells. MATERIALS AND METHODS: H460 human lung carcinoma cells were plated and treated with 10nM RFS-2000 or 4.5microM CPT-11 for 4h. Cells were then irradiated with various doses and treated with 1microM etoposide for 1.5h. Cell survival and sublethal damage recovery (SLDR) were determined by clonogenic assay. 7-aminoactinomycin D (7-AAD) staining and flow cytometry were used to analyze cell viability/apoptosis after combined treatment of drugs with radiation. RESULTS: Survival experiments showed radiation dose enhancement ratios (DER) of 1.26, 1.34, and 1.63 for RFS-2000, etoposide, and RFS-2000 plus etoposide, respectively; the corresponding DER values were 1.30, 1.39, and 1.65 for CPT-11, etoposide, and CPT-11 plus etoposide. The analysis of cell viability/apoptosis using 7-AAD staining and flow cytometry showed an additive effect. Greater inhibition of SLDR was observed with RFS-2000 plus etoposide than with either agent separately, but CPT-11 plus etoposide showed a more modest effect upon SLDR. CONCLUSIONS: These data show that the combination of Topo I inhibitors, RFS-2000 or CPT-11 plus Topo II inhibitor etoposide, is a more effective radiation enhancer than either agent alone in human lung cancer cells. The mechanism of radiation enhancement may involve inhibition of SLDR with RFS-2000 plus etoposide, but other mechanisms may be involved in the combined treatment including CPT-11.


Subject(s)
Antineoplastic Agents/pharmacology , Camptothecin/analogs & derivatives , Camptothecin/pharmacology , Etoposide/pharmacology , Radiation-Sensitizing Agents/pharmacology , Topoisomerase I Inhibitors , Topoisomerase II Inhibitors , Cell Survival/drug effects , Colony-Forming Units Assay , Combined Modality Therapy , Dose-Response Relationship, Drug , Drug Combinations , Enzyme Inhibitors/pharmacology , Humans , Irinotecan , Lung Neoplasms , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...